On right n-Engel subgroups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on the right n-engel group elements

in this paper we study right $n$-engel group elements‎. ‎by modifying a group constructed by newman and nickel‎, ‎we construct‎, ‎for each integer $ngeq 5$‎, ‎a 2-generator group $g =langle a‎, ‎brangle$ with the property that $b$ is a right $n$-engel‎ ‎element but where $[b^k,_n a]$ is of infinite order when $knotin {0‎, ‎1}$‎.

متن کامل

Results on Engel Fuzzy Subgroups

‎In the classical group theory there is‎ an open question‎: ‎Is every torsion free n-Engel group (for n ≥ 4)‎, nilpotent?‎. ‎To answer the question‎, ‎Traustason‎ [11] showed that with some additional conditions all‎ ‎4-Engel groups are locally nilpotent‎. ‎Here‎, ‎we gave some partial‎ answer to this question on Engel fuzzy subgroups‎. ‎We show that if μ is a normal 4-Engel fuzzy‎ subgroup of ...

متن کامل

On the Right and Left 4-engel Elements

In this paper we study left and right 4-Engel elements of a group. In particular, we prove that 〈a, a〉 is nilpotent of class at most 4, whenever a is any element and b are right 4-Engel elements or a are left 4-Engel elements and b is an arbitrary element of G. Furthermore we prove that for any prime p and any element a of finite p-power order in a group G such that a ∈ L4(G), a, if p = 2, and ...

متن کامل

Fuzzy soft N-subgroups and N-ideals over right ternary N-groups

A right ternary N -group (RTNG) over a right ternary near-ring N is a generalization of its binary counterpart and fuzzy soft sets are generalization of soft sets which are parameterized family of subsets of a universal set. In this paper fuzzy soft N -subgroups and N -ideals over right ternary N -groups are defined and their basic algebraic properties are studied. Fuzzy soft N -subgroups and N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2010

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2010.05.007